31 research outputs found

    Multiple Rabi Splittings under Ultra-Strong Vibrational Coupling

    Full text link
    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultra-strongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24%24\% of the vibration frequencies. As a proof of the ultra-strong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the anti-resonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic bandgap of ca. 6060 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultra-strong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular in the context of mode-selective chemistry.Comment: 10 pages, 9 figure

    Revisiting quantum optics with single plasmons

    Get PDF
    The growing field of quantum plasmonics lies at the intersection between nanophotonics and quantum optics. QUantum plasmonics investigate the quantum properties of single surface plasmons, trying to reproduce fundamental and landmark quantum optics experiment that would benefit from the light-confinement properties of nanophotonic systems, thus paving the way towards the design of basic components dedicated to quantum experiments with sizes inferior to the diffraction limit. Several groups have recently reproduced fundamental quantum optics experiments with single surface plasmons polaritons (SPPs). We have investigated two situations of quantum interference of single SPPs on lossy beamsplitters : a plasmonic version of the Hong-Ou-Mandel experiment, and the observation of plasmonic N00N states interferences. We numerically designed and fabricated several beamsplitters that reveal new quantum interference scenarios, such as the coalescence and the anti-coalescence of SPPs, or quantum non-linear absorption. Our work show that losses can be seen as a new degree of freedom in the design of plasmonic devices

    Revisiting quantum optics with single plasmons

    Get PDF
    The growing field of quantum plasmonics lies at the intersection between nanophotonics and quantum optics. QUantum plasmonics investigate the quantum properties of single surface plasmons, trying to reproduce fundamental and landmark quantum optics experiment that would benefit from the light-confinement properties of nanophotonic systems, thus paving the way towards the design of basic components dedicated to quantum experiments with sizes inferior to the diffraction limit. Several groups have recently reproduced fundamental quantum optics experiments with single surface plasmons polaritons (SPPs). We have investigated two situations of quantum interference of single SPPs on lossy beamsplitters : a plasmonic version of the Hong-Ou-Mandel experiment, and the observation of plasmonic N00N states interferences. We numerically designed and fabricated several beamsplitters that reveal new quantum interference scenarios, such as the coalescence and the anti-coalescence of SPPs, or quantum non-linear absorption. Our work show that losses can be seen as a new degree of freedom in the design of plasmonic devices

    Current crowding issues on nanoscale planar organic transistors for spintronic applications

    Get PDF
    The predominance of interface resistance makes current crowding ubiquitous in short channel organic electronics devices but its impact on spin transport has never been considered. We investigate electrochemically doped nanoscale PBTTT short channel devices and observe the smallest reported values of crowding lengths, found for sub-100 nm electrodes separation. These observed values are nevertheless exceeding the spin diffusion lengths reported in the literature. We discuss here how current crowding can be taken into account in the framework of the Fert–Jaffrès model of spin current propagation in heterostructures, and predict that the anticipated resulting values of magnetoresistance can be significantly reduced. Current crowding therefore impacts spin transport applications and interpretation of the results on spin valve devices

    Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments

    No full text
    International audienceThe launching of surface plasmons by micro-gratings of subwavelength apertures milled in a thick metal film is important for the development of surface plasmon based circuits. By comparing the near-field optical images of such surface plasmon sources with the results of a Huygens-Fresnel principle based scattering model, we show that the properties of the locally launched SP beams such as divergence or uniformity can be tuned by adjusting the shape of the micro-gratings. This allows us to propose an optimized source array well adapted for providing a narrow, collimated and uniform beam. (c) 2007 Optical Society of America
    corecore